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ABSTRACT 

\ 

Seismic arrays are multichannel sensor patterns 

immersed In a mult1-dimensional signal-noise field and the 

analytic problem is hence analogous to that of radar antennas. 

The subject is thus opened first by a review of antenna theory, 

considering questions of aperture width, antenna resolution, 

and of optimum design criteria, and Pecondly by a review of 

spectral theory, including special examination of the Ross 

"time gates". The general optimisation problem for multichannel 

data leads to large systems of normal equations of Toeplitz 

forn (as presented In previous reports) which require recursion 

solution techniques to be computationally feasible. Such 

techniques are elaborated here in terms of polynoFü.?Is orthogonal 

on the unit circle. The specific seismic array problem is then 

considered in terms of plane-wave-front signal and noise 

contributions plus Incoherent noise, and details of the 

"velocity filtering" method are presented. -All practical array 

filtering rests ultimately on empirical measurements of signal 

and noiae properties, especially of spectral behavior. Spectral 

estimation from finite array measurements is the final question 

considered, including relations between continuous and discrete 

aperture functions, and the tabulation of aperture functions 

with their windows. 
V 
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SEISMIC ARRAYS  FOR THE DETECTION OF  NUCLEAR EXPLOSIONS 

Enders A.  Robinson 

May 1964 

;u mrxm OF ANTENNA THEORY 

Arrv.ya  of detectors have velocity discrimination 

p.roi>ertie& and h^nce directional sensitivity. In the first 

imvt ot  iris treatment we would like to review the general 

theory c.C the  directional properties of antennas In order to 

or:.^ out  some of the design problems for arrays of specified 

■;l!,.r-cvtivity. 

An antenna may l^e viewed as a spatial filter, and so 

has a bandwidth that is determlnded by the aperture extent; 

therefore, it wil^. reproduce only a finite number of the space 

harmonics representing a desired spatial pattern. From this 

standpoint, the antenna resolution is limited by the highest 

space harmonic within the bandwidth of the spatial filter; this 

bandwidth in turn is determined by the aperture size. Never- 

theless, this well-known limitation on antenna resolution may 

be overcome by the use of correlation type processing of the 

antenna signals. The spatial-frequency bandwidth, and hence 

the angular resolution, of an antenna system thus depends not 

only on the aperture extent but also on the time-frequency 

bandwidth of the received signal. This Is to be expected, 

since the aperture extent is only uniquely defined in terms 

of wavelengths and hence the signal bandwidth should play a 

part In determining the spatial filter characteristics. 

For example, let us look at a rad&r antenna. Suppose 

that a linear antenna is constructed so that the radiated 
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electric field across its face is sinusoidal in time with an 

amplitude and phase depending on pogition according to the 

complex-valued function of position A»C*) . The superposition 

of the contributions along the antenna give the antenna pat- 

tern. By examining the figure, we see that the distance 

traveled by the Incremental wave from the position (x^x+dx) 

varies with the position K  . 

RtLnQ 

p*sH!cw (&~imi 

Aptrture utfjik d 

Figure .1 .    Radar antenna geometry 

We have: 



If A^X^HtX)«^00   , then the sin 

position (X.X-Vdxj is 

e wa' ■ecclved 1 rom th 

where 

^X 
( C =» velocity of light). 

5 IT {" 
Let us use a reference phase of —~-2■ when at a distar^e i^ 

Then the received signal can be written as 

h Cc5l«.t^^cr^r)]dU. 

We will now make the approximation 

r.-r^ RtH^l-Rfi+^^f^] 

^ XUw^- 
2R 

which is good for small ^ and large H . By "far field" we 

mean that R is so large that "^Q"      
can ^e neglected; the 

important criterion is for 

±-i-l~ <<x 



where 4 Is the apert-yre w Also we shall let ton B ^ & ? ss 

Heiice the received signal may be written 

M e^tot+^T^xejdJc. 

Adding sine waves of the same frequency, the amplitude and 

phase of the total signal -eceived at an angle ^ is gl'/en oy 
4 

/1 

cut)» j M(x)eI^Cx)€;^?xe dixt -a 
2 

Letting 

X and  XAo(^-)«Ac^ ITT 

we have 

ace) s 
ITT 
/ 

Aca) e** dl^, 
Isi 
X 

Thus we see that the antenna pattern 0U8)  Is tht Inverse 

Fourier transform of the Illumination function /\(oo) , 

Because of the finite aperture width, that is, 

the antenna pattern is the Fourier transform of a band- 

limited function. Thus a narrow beam width would require 

a wide aperture width d of the antenna. 



There are various ways to measure the beam width of 

an antenna pattern, OU®)     . Suppose that  CU&)   Is real. Ther 

9-^ 

j iMfeid^ 

-30 

(where ^^lj^)^!_^^^ )  might be small not 

because CU6^  is concentrated around §  on the  C -axis but 

because the contributions to the numerator for a>0 ml^ht be 

cancelled by the contributions for o^C .  Thus we see that it 

is idM   that is involved in our intuitive notion of the 

spread of Otö) on the   ^-axis. Also lCUe)| allows us to 

consider complex CK^  ^s well as real 0.(6>  .  Mow for 

analytic reasons, it is much easier to work with !CU&)|  instead 

of  l(Xi%)|   ; as far ar  spread on the  8--axis is concerned, 

{QUfeM1 is as satisfactory as |(U^| * although obviously 
there are quantitative differences depending upon which we 

use. 

Thus the team width of an antenna pattern CU^)  niay 

be measured by the quantity 
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where 

§= ^   ■   — 

It is always worthwhile to consider other measures 
for spread along the     &-axis#    Another measure may be referred 
to  the equivalent rectangle;   specifically,   the measure    f  is 
the width of a rectangle having the same area as    jatö)^     and 
having the same peak value as      |Cue)i2  .    If we let   (ai^))2- 

denote the peak value of     jCUBJp       >   then 

ThltJ r^asure is not good for antenna patterris for which fat0)| 
is not reasonably block-shaped. 

Let us now derive expressions for o(   and f   in terms 
of the illumination function    Äto>).    Because we can choose 
our origin of coordinates as we like, we may assume that   » 
and  9e    are equal  to zero.    This  involves replacing QU8) by 
0(8'6)      or CUÖ-8.)   as the case may be;   in turn,  the illumina- 
tion function is modified by a linear phase term   £>'A<*>5     or 
^-1^%Q      respectively, 

Parseval's theorem states that 

/ 

I 
cKe)!^^*— /  |A^)|2d^ , in. 



and also we have 

Hence the measure of spread, J   t   Is 

r- 
Lj iAc^iJa«     nir f

0,^,»^ lify -^o 2TT/_ 

ZTT 
UO 

1 > 

the width 02" the equlvalent rectangle. To obtain a formula 

for d1    in terras of A(^ >  we must use two applications of 

Parseval's theorem, one for CUd) and the other for ^a(&) . 

Because 

we have 

-oe 

A/Cw)) = -^ j 9ai^€'AQ^d&. 
-QO 

T 

AftiüC)*^ 6^&) 
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is a Fourier transform pair.    Thus^  using Parseval's  theorem 
for this  pair,   we have 

Thus  the measure of  spread,   (A     ,   is 

« -^ 

of -- 
f |wö)|2di8    / fA^>|2^ 

These formulas for f   and C^ allow us to study the dependence 

of beam width upon fearturcs of the illumination function  A^). 

The illumination function may be written 

A(Q)^ficuä)eA+cul) 

where M(u)) is the magnitude and ^Cu) is the phase. We now 

want to show that, for any flxe^ magnitude function HCüO), 

the phase function fyiü)   that minimizes the beam width 

is a constant (or linear function of Oi ). Since, under 

the assumed conditions, 

roe % Z3*1 

2TTj lAi^dc^   2Tr / M^co 
'-«« 
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where   M     is  lixed,  we w 

denominator,     Becaiise 

t W  iiJCi 

/ aO 

we see that we get equality only if ^ Is a constant, which 

proves our assertion.  Let us now look at the beam width  Ot1 

Because 

we have 

.1 . -n 
because the factor £*? has no effect on  |A 1 

Because H and M^ are real, the only way to minimize 

|M'4;f^!|2 = ( h^'^-KH^)21 for  fixed H Is to make ^'^O  , 
which means that ^ would be a constant.  Nevertheless, since 

we only need to make M^'-Q *   the {Mints at which H(ui)~0 need 

not be points for which ^'(.i^,)~ö      . Thus, suppose H*uj) exist; 

except possibly at isolated points where  Mtu)j-0   and at 
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such points  let  hCoi)     be at least continuous*    Then any ^ucri 

that Is constant between adjacent zeros  of   H     minimized    d 

As usual, any linear phase    1<A§      can be subtracted from the 

minimising    ^o^)     without changing the beam width    &*    because 

the effect  Is  only to  translate   0^%^    along the     ^-axis. 

Suppose that the antenna pattern   ate)    Is real. 

Because 

we have 

•SO 
oO 

or 

= Ac-oo) j 

Thus the phase condition for minimum beam width,  namely ^(«)* 
constant,  requires that     45Cub)«0   ,  and HCto^Mc-co) so that 

AtcO),»Htu>)    is a real even function.     In turn,   the antenna 

pattern     (Xt^     is an even function. 

Let us now  look at the effects of  the magnitude 

lACijz)      of the illumination function on the beam width of the 

antenna pattern       CUü^) .    Because the beam width can be made 

arbitrarily small if the bandwidth of MCo5) is made large 
enough,  the appropriate problem Is  to minimize beam width 

when  the aperture bandwidth is  limited.    Thus we need a 

measure of  the spread of  the illumination function    Acu^)   0^ 
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the tx) -axis to provide a numerical measure or bandwlcith. On? 
such notion of bandwidth Is the radius of gyration 

'oe 

where we assume that 

This last restriction only amounts to a translation of A^u^ 
by an amount 53 , corresponding to multiplying QUO) by ^*t3^ i 

which has no effect on (%     (or f ). Another notion of band- 
width is the natural one for antennas with finite aperture 
width; here It is assumed that  H<oo)=0  outside of an 
interval (corresponding to the aperture) on the CO-axis. We 
define ""fe. as half the length of the Interval: in terms of our 
previous notation 

^(Q) = 0   -^  M > ^ = -~ 

where ^   = aperture width and  \ —JULZ.   (where C = 
velocity of light). 

We now wish to show that broad illumination band- 
width gives a narrow beam width (that is, a good antenna 
resolution), 



'rom the definitions  of    M 

« lAl 

ana f?        ,   we have 

By use of  the Schwarz  inequality,   it follows   that 

so 

QO 30 

oOAA'dto 
1* AQ 

r 
$ ] iwfti^co.i lA'rdü 

'»op 
-«XJ 

I  QAA'dUo 

(/^lA}^)2 
$  o( ̂ rt^ 

p 

We assume that the phase  4?(u))t0 in 

so that 

Acco) = M(co) 

Is real.    Hnce we see that 

thereby giving 

-co 
coAAdico    =-r 

rac 

'—^6 

diAx 

CO(jÄ)dcO 
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for the numerator of the Dove expression.  If we Integrate 

>y jarts, we therefore obtain 

1 

for the numerator,   and since    ooA 
expression reduces  to 

i i 
»c 

Aad« 
■oO 

Hence 

or 

UBZ 
I 

as 1^1 _♦ oO      ,   this 

Which is  the fundamental expression relating  the measure fi* 
of  the beam width   (or antenna resolution)  and the measure ^ 
of  the  Illumination bandwidth   (or aperture width).    Thus 
If we wish to narrow  the beam width of  the antenna  pattern 
it  is necessary to broaden the band width of  the antenna 
illumination. 

The  lower bound of   j     for   ctj?      is actually obtained 
for the Gaussian-shaped Illumination function 

\ 

CO1 

co^COr (where   C   = a  positive 
constant) 
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which yields the antenna pattern (which Is  also Gaussian-shaped} 

CtCB) ~ C C ^el (where C == a positive 
constant). 

Nevertheless, there Is no upper bound for &ß   . 

A similar result to cißi^- Can be obtained by 

using the width of the equivalent rectangular f    to  measure 

beam width of the antenna pattern (XC^)  and using finite 

aperture width to measure the bandwidth -k    of the illuminatlc 

A"-  . We suppose that 

A(Q)=0      for  M>t. 

Hence the width of the equivalent rectangle is 

i A 4 

The integrand of the denominator is  A ,  which we may write 

as  l'h      in  order to apply the Schwarz inequality.  Thus 

we have 

if 
fe 2 ^ .. fv ^r... 
(A-l)dtu}| ^  IAI ^      dü*2-kj  (Al ^O 
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Therefore  the following  incquallt/  is  satisfied: 

if >TT. 

The  equality Is  satisfied  If and only   if  the  illumination 
Is a  constant for   M< t      ,   in which case  the antenna  pattern 
Is 

(X(8)- U    ^ (where  = a constant) 

In view that 

for a constant illumination function over the finite aperture, 
that Is, for 

H^) = { constant        for jcdl^^ 
0 for :^j^ 

it follows that this illumination is optimum in the sense of 

giving the smallest possible equivalent-rectangle width for a 

given aperture size.  Nevertheless, if we measure the beam 

width (I.e., antenna resolution) in terms of radius of gyration 

Instead of In terms of equivalent rectanele. we obtain a dir- 

ferent result for the cptimum illumination functiori for a 

finite aperture. 



cU 

?he finite aperture restriction is that the lllumi. 
.on satisfies the ^^»^rt^t^-r- 

Ac^}-0      for  |a)l>fe. 

The reswt  that we seek is   the shape of 

AcO for     (ccU^ 

such that the product 

13 a nunlmiim.    To minimize    C*    ,   A     will have a constant 
phase  that we can take  to be zero,   so 

Äc^>= Mi") 

is  real.    We recall that 

Öt    's- 
fBH3 

,    lAl'dco /   A^tc 

Thus we wish to minimize 

(A'f^u) « /    (A')2dicO 



no t *»a T r-.f 

^^O 

*: 

-■fe 

tUJ 

UP^. hhp   r-? g  tne  caxcuius o      --t* 
---»- V '^^ i    X» V -Ufltl  f      tht 

be 
>ut   to 

Acc^-Cciff) 
(where  C   = a  constant) 

enc   the minimum of    oC 

2     TT!    /i^^^t 

) 3Cm^H 
CM. 

4^ 

Thus beam-width parameter   dl 

X 

L n xii n 4" l : v» j~. ^p i .r -?  ..-3 4- V-. meter 

■S q t ■* c! r -. f     ^ h o 
± i i CM ^*Ci -L -L u 

0(*.| 

with equality  if and  OT ■y^      f'»-»^. 

• *^ "^ --- 1 i      Q i 4;   4r V-» ^ Ü i >wj.uii   i uiiv uiuri   -i-ü   4.n   C< ominon  use  In 
W A 1 i it* k--    • 



that 
In sunrmryf  we may observe f T» t^ O ^ J   :   f- e 

(1)    to have a narrow beam antenna  pattern 

(2) 

It  is T': C* r* i-tr & t* '. )ut not sufficient to 
have a broad illumlnatl ̂ iij 

phase ^(cö) of the illumination function, 
other than a constant or a linear phase 
(which shifts the antenna pattern with- 
out changing Its shape) increases the 
beam width of the antenna pattern, and 
there Is no upper bound for this increase. 



in/ii. 

~.f We now want to review tiine-frequency aspects 

signals.  Many significant achievements in engineering 

theory may be traced to Fourier analysis which has been 

found to be extremely well-suited to the precise mathemati- 

cal statement of many natural phenomena.  An important char- 

acteristic of the Fourier method is that It gives completely 

equivalent statements in either the time domain or the fre- 

quency domain. 

There are three main mo .sis for the Fourier approach 

that can be set up, namely 

(1) the Fourier series approach, with the 
attendant assumption that the time 
function is a periodic function of 
continuous time, with the result that 
the spectrum is made up of lines a„ 
discrete frequencies that are integer 
multiples of the fundamental frequencv 
(equal to the reciprocal of the period), 

(2) the Fourier Integral approach, with the 
attendant assumption that the time func- 
tion is an aperiodic integrable function 
of continuous time, with the result that 
the spectrum is also an aperiodic inte- 
grable function of continuous frequency, 

(3) the z-transform approach, with the atten- 
dant assumption that the time function 
is a function of equally-spaced dis- 
crete time, with the result that the 
spectrum is a periodic function of fre- 
quency.  Hence the spectrum is a Fourier 
series with the time function as Its 
Fourier coefficients. 

For the purposes of this section, we shall use 

model (2):  the Fourier Integral approach.  The classical 



definition of the Pourier trangforrn Is as followa: 

time-function  -fit) ,  then Its Fourier traneform Tiwi) is the 

frequency-function given bv 

FOO 

fr^=     -fd)e-^At 
-«■« 

where 

t: ■  time   (say.   In seconds) 
c> = radian frequency  (say,   in radians per second). 

It is necessary to state various further remarks about ftt) 
and     Rco)     t but we will assume that the reader Is already 
familiar with them.    Making use of the Euler identity 

e-irft - CCS Cot - 15l^ uTt 

we see that the Fourier transform  F(^  Is 

■ (cosine transform)  - -u (sine transform). 

Much of our discussion will be concerned with the cosine 

transform for a parallel discussion would apply to the sine 

transform. 



It Is often the case that only a finite portion of 

the time function is available. As a result an error would 

result in the computation of the cosine transform because of 

the use of a finite instead of an infinite interval of Inte- 

gration. This errori called the truncation error, can be of 

major consequence, and so we will discuss various approaches 

to this problem in this section. The effect of the truncation 

error on transforms is to superimpose a relatively large am- 

plitude ripple upon the correct transform; this ripple Is 

often called the Gibbs phenomenon. Hence we will look for 

various suitable modified computational techniques that lessen 

this spurious ripple. More specifically we will look for some 

suitable function WCU that we shall call the time gate 

associated with the approximating method. 

Denoting the Fourier transform operator by F  and 

the approximation operator by F^ t  we h-ive 

p(wd)^t)l- F,l^t)l-F^ 

for the approximate transform      F^tuA    • 

The Fourier transform of  the  time gate  UTCt^    Is called the 

frequency window  Vftco) j   that  is, 

W^> = F C wrctvl. 

Because 

Fcw)=Ft-^l 
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we can find ttie approxiinatlori  f^C-f^t)] In terms of Wf») 

and Pi^    ,    We use the familiar rule that the transform of a 
product Is equal to the convolution of the transforms of 
each factor in the product. Thus 

where 4  denotes convolution, that is 

Th^s we see that the approxlrrBtion  F^Cj^t)] is obtained 

from the correct transform F^)  by convolution of the 

correct transform with the frequency window.: Let us now 

look at the process of convolution in orde* to see how the 

approximation differs from the correct transform. We see 

that V/^-u),) is the same as Wtui,! reversed in frequency 

direction and shifted by the amount CO . Taking the 

product 

and Integrating over c5i gives the value of the approximate 

transform at the frequency CO » Hence it may be said that 

we "look through" the frequency window (reversed and centered 

at 6ki ) at the correct transform in order to obtain the 

approximate transform. 

The frequency window is independent of the time 

function being transformed; insteadj it is characteristic 

of the approximation method used and gives a complete measure 

of the difference between the correct transform and the 

approximate transform for any time function. Ideally we would 



like the frequency window to be the Dirac delta function for 

then the approxiinate transform would be identical with the 

correct transform.  Practically we will seek a frequency window 

VyJOCrt that approximates the delta function; then the convolution 

process for a given frequency averages the correct transform 

over a narrow band of frequencies around this frequency, with 

almost no contribution from frequencies far away from this 

given frequency. 

T*et us now turn our attention to some gates and 

their windows. We have the following table: 

TIME GATE 

Box car of length IT 

mi) = 
I   JOT {tUT 

o j*r Hi >T 

Triangle of length 2T • 

I.Ül ^ |t|4T 

W(t^ = 
0 V lt|>T 

Delta function at to 

FREQUENCY WINDCV 

Dirlchlet window; 

Vc^)Ä2T 
eoT 

H Q,CU) 

Fejer window: 

WC«) 

. «T 

TC-^SH 
1 

>-<u5t« 



TIME GATE 

Cosine Wa v e, 

CoiCi^t 

Von Hann gate- 

iTt 

wet) 
0 j* \ti>T 

Richard Hanmlng gate: 

V^Ct) = 

utt^e1^!^) 

^[4to+t^)44c^-^)] 

Von  Hann window; 

"fr. . i W^^) - ^ Q,( w+if) 4»M4tQ^^ 

väktJ-« 

Richard Hamming window: 

^(to)« bc^-^.;* Qo^) * Q,c^-^ 

^jii>*U^t^ 

Ross gate: 

^(0 = 
0     4^ W>T 

WC^ = 5[Q^+^HQ,(C.-^)] 

\N^CCO) 
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The following result Is knowi rtf thf 

Fourier transform: 

If a time function has K-\    contxnuoys 
derivatives and at most a step discon- 
tinuity in its n* derivative, then 
its Fourier transform will have an 
envelope of order  '/Q«.-*-* 

Let us use this result to compare the above time gates. The 
fch 

box car has step discontinuities in its O—- derivative; hence 

its window has an envelope of the order of -^* , as seen by 

the actual expression for the window. The triangle has step 

discontinuities in its 1— derivative; hence Its window has an 

envelope of the order -^r , as seen by the actual expression. 

The Von Hann gate has E^ep discontinuities in its second der- 

ivative; hence Its window has an -~j- envelope.  The Ross 

gate vT^t-fc^  has step discontinuities in Its "k,-! derivative; 

hence Its window has an --^s  envelope* 

It is interesting to consider the characteristics of 

the family of Ross gates. The first few members are plottec 

In the following diagram: 

*>.(& 

Figure 2,      The family of   time  gates   WiCt)-^"^») 
■ll-l 



we see that higher values of t, means less and less contribution 
from values whose abclssa Is close to t = tT 

Let us now find an interpretation for this family. 

Let us consider the '-mse where the function to be transformed 
is 

(tt)« Coi cot 

for some arbitrary frequency  cO . This choice has the 

advan'age that we know that the normalized correct transform 

of this function is unity for u) and zero for all other 

frequencies. The problem Is to find out what is the effect of 

calculating the approximate transform given by 

Instead of the correct transform given by 

T 
Um-  !j i^CüAt^t , 

and how the result varies for T  and cdi  . The frequency 

C3,   may be called the scanning frequency» 

For the case when Q,»cO  , the approximate transform 
is 

Y J UX cot di  ' 
Aln lUjT ,4. _ ^_m- 

2iüT 



id for the case when   fe^^iO      f   the approximate transform is 

J2 
T iwWji r Cw+UJ i 

The result    \ ^^x^J^^-       for the case oÖ^tO Is  plotted  in  the 

figure. 

VAWt Of /m 1*7 

cuTsir w7*%$ an-lit 

Figure 3.    Dependence of the approxlnatc:  transform on 
truncation length   Y. 

From the figure we see that the approximation oscillates about 

the correct answer,   1,  and gets closer and closer to this 
correct answer as   T    is   increased.    The problem now  is  to 

find a way   to utilize this  oscillating approximation so as to 

find a more refined approximation.    It appears  that a  linear 

weighting of   the oscillating estimate  shown  in the figure 
would be a good choice,  and  in fact corresponds  to F' Jer 

summation of  the original  integral. 



We thus have 
^ i i-c^i^T 

This function is plotted in the figure: 

A£/n   cut' 
s~ ^ftfFNMtiAn VALUE   ~   I i    —-   -~ 

o 

i. toAAtCT VfidJfZ » 1 

uT'ir tfr*xr 
—I—■ 

Figure ^i.  Dependence of the second approximate transform 
on truncation length f. 

For most  T values, this funccion is closer to the correct 

value, 1, than the previous approximation, and thus the 

weighting has helped matters \>o  some extent. The envelope of 

this aporcxlmatlon lö    F^T?   * Nevertheless, this choice 

of weighting has introduced the problem that the approximation 

no longer oaclllateL' about th« correct value 



For the third approxlmütlon let us choose the 

weighting function StV'T^  , thereby obtalninf 

This function not only has the  ("TTf")  envelope, but also 

the approximation still oscillates about the correct value, 

which means that the process can be continued. 

For the scanning frequency Cxj. + oO  , this approximation is 

A. f L fW(^t)T        \ 

which has the sante order envelope around the correct value 0. 

We are noä  in a position to derive the Ross class of 

time gates. The first stage gives the (unnormallzed) 

approximation 

j   4(tiCescät dt 

The  second stage gives 

j   t.dt.     ^ctKoUOtdt 
- ri -/ft 
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Interchanging the order of Integration, this expression 

becomea 

it 
/ ft) 

i 
t. 

Cc=s t&) tat, (=~~)f(i)^<^tdt 
0 

so the second stage corresponds to the weighting function 

or time g^ite 

tM1 

Similarly the time gates for higher stages can be found. 

W»a) 
It Is instructive to look upon the Ross time gates 

as a means of countering the effects of truncation 

bT smoothing the approximation at the price cf losing a 

certain amount of frequency information. When ]^   is multi- 

plied by W^ct)  , the effect is to make the values of -^Ctl 

for large !t| not as important in the approximation as those 

for small 't  . Itiis leads to smoothing since each cuccessive 

value contributes less and less to the accumulated integral. 

Nevertheless, if we take a time gate W^ct)  for a too large 

value of 4t  , then we essentially reject a very large portion 

of the given finite record of -^tt)  • and the resulting 

approxlnatlon achieved by using a more moderate value of -k 

Thus, if we try to achieve too much smoothing, we may sacrifice 

significant frequency information; it is necessary to strike 

a balance between these two conflicting goals  Excellent 

empirical and theoretical treatment of this problem is given 

in the original work of Ross (1954), 
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M   TIO». first we wish tu consider  properties  of polynomials 
orthogonal  on the unit circle   (ueronifnus,   I960).     The poly- 
nomials   ^m      are defined  to be orthonorraal with respect   to 
the spectral density    i(f>      on  the  unit  circle    121 = 1    ;   that 
1 s 

-♦5 ^   {       ^ = 

where    4^") = dnl^-f pn2
n*t+-      + v0„ 

Also let us define 
with oU>0 

4>*U)=2«<|.n(i) 6o     ^Q)=di 

Let  us  put 

and then multiply each side by     <$C2) for    4t ^ 0.1 f 2."" ft-l 
set   2^ €-nr*'f > and mtegpatg^ 



%h 

We obtain 

Since   ^«e-1^)/«-""»-'^ , , +l1,;u ls a Polynomial  In   e+"*3' 
where ^.v     n f0ll0Ka  that  the flr3t ^^^^  ^  ^^ 

introducing  the notation 

B obtam   ^s-dnH 

and hence 

B-i "T- 

<*«♦» -1=0 

so 



setting 2-0  we find }\n    ;   that Is, 

4w0) 
d --X^^*-M' 

*l*\ 

so 

XH--' 

Thus 

so the following recursion relation holds; 

,12)  7^12)  4^(0) $*a) I 

dh+i l«H dti 

In this relation, let us-replace 2  by T  J thereby obtaining 

—-—- - — 1_ __—„  

and multiplying by 

obtain 
Z^1   and taking ex conjugates w< 

2^'J (1) T1  I '*,* 
«H-2 ^  _ 

K+t r-= 
n ^n^i di 
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which is the recursion relation 

0^ »H-l oi* im-! 

Let us introduce the polynomlall 

%^ 
%,a) , t*<2)=zh^K 

and define the parameters OH by the formula 

t %*s*) o**~y„m=~ 
d**\ 

fa   MeO.I,?," 

Then the recursion relations b ecome 

'Lw^z^-Qi.t*«) 

t!,'2^^25'0"2^2) 

Let U8 now find the connection between the parameter 
\An     and the autocorrelation 

■i r»=}ae";^i^df = f.t. 4 
a 

The roeplltz determinant is defined to hi 

^ir- , ♦«04I#1,-" ; A-,-1 • 



and  It  is  seen that  the pülyTiomials can be written 

| r,  r.,   r. 
r. 

t^) 
ä*~ 

i 

t^ Tni n*-j 

i  2  Z1 
r-, 

n 
dh-,, 

Let us introduce the notation 

i 
Cfa),|ai)Ei tce-^o^e-^'h i(M 

where "^<.i) and ^(.2)  are arbitrary polynomials in Z • 

Using this notation we see that 

(2".2,,) 

A* -I 

d! 
'**Vtl C2»2R) = rH-fc. 



From  the relations 

it Is possible to find a recursion involving only ^* as 

follows. Solving for Vvv we find 

n      a.1 

and hence 

which gives 

2.u> ^^«(a^ci^^^-Q^zcf-iN )^ # 
'm-2 

Similarly,  we find that 

ci^,^^"^^'^"'"5-'20-10"^^- 

Prom this last expression we obtain 

&.(t1,2^) = 5.(z^,,^')+äKf,(^„^VäB+t(t-|o^(2^.^) 

which is 

-L--(i-ia.|2)-ir = o 

since 

f 

<^nti 
^tX)"1^.2"). 



%h\ii 

and 

dl 
^ 

= i -la«! a 

h-» 

Qln1 
»•1-4 Mo -^0 

J 

This last step follows by induction sin Ce 

OfM-f 
= ( ^     dt    ^ •n-t 

=& 
L  13^' 

d,4 
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In sufibTia mry we have 

(1) ^-oi.ZH--   4Wh 

I Tni Tm  J   »    a^M =   Kronecker delta  function 

*^<,-IMlKl-i«,|l).-(i-|(Wt^ 

c-l-,i°il_lM'.       la^i1 

'»i    <(.'     d,1 JT- 



methods   sive^   '^ 
O -«  - 

MOW  let  us  treat   the multichanrie 
in  the  monogFaph Studies   in 

Processes, 

1 case following the 

üptinmm Filtering of 
anu Multl h2M Stochastic We now oae nsatrlx 

nutation.    We have   the forward polynomial 

Qnl2) =0^4-^,2+-' 4a«KZ n 
( Quo* I ) 

and the backward polynomial 

where 

Mi)=Mi)R+'-+U£) + b.0     f b.0- I) 

[cu-vcwo] 

U- 

p«+! 

" [^,0,-^0,01;] 

with   dy, -Qnon^,^'-4a.Hr. 

and 

to.lw^M u. KV 
] 

= ißl,0tor"toA] 

with A^ ^rl4--^b«r-H-i 

(Note, this is a new use of the symbol &    ,  corresponding to 
the usage in the above monograph). 



H' 

i 

anc 

^ vifcj  \*Ht -   f*,-* fcOirt,        j n** VPS j V" »•» f^  *? 
- *    ' >»+ i f 

u^i*** rs j 

= [a^^f^o^-^o^^^^j 

C^A*A«+M<M/'*^1 r* *-* ^+1*? 

o ^ 

^ *' "l^HwOi^Oi- -.O.^^H^J 

wnere ^m and -^ are chosen so that 

= 0 
ihe new filters are 

and 

CW^VM,-^.-^ * IX.;" (W.OJ+*"i0'b"'"'h-.oI 

Lb^r-.b,^,^! - t=.U)-.b.s]+K(a„o,- Q^oj 

wnere 

4^ s-a^^-^'^ * ^=~ß^^ **>** ** 

Thus the polyncmlals satisfy the recursion formulae: 



'■ ^n+i 
n 

rAft*i rt.t+iRiKph 

a^-i Pft-i  :   "^ I     Kiift 1 5 >1 

"  (3M + "fekn^n 

=;   Brx^'ftbH^ P« 

o 
=:  0v^^bo^^po~   ^bi^tP» 

These ire the analogues of the formulae found In 

the single channel case, Just given. 

The general filter polynomial is 

^C2)«fn04fi 

[l^^ni/^^hK.^J 
■a.    i      - = n..---,5n,ä;+1] 

r^-f«^^-^»..»-.. 



h -r^l 

.r.l 

Thus the new general filter is obtained by setting 

rn+i+^nj^'' ^n v*. 

so 

Thus the general filter polynomial satisfies the recursion 
f 

In particular: ^(2) = |0t2)+ ^2 b,^) 

SO 

and hence: 

^c2)-^+Vb'(«H^2,,:!l^)+"+V2M,,»(i). 



T   •  1 = —.:.; 4 o —. . 

-.2 L il 
0KC2) = a6i2)H 1(:wZb3(^) + *üiZ  ^+-i%^ 

. n i 

%-M 
s l 

bna^ bft(i)'ft|>0(^W2Hibi(2) OtCz^-'+i^.,^) cu^) 

where bgC2) = be j  OoU) = ^ }    M? ) - b 

are constant matrices. 



A seismic disturbance except in special cases does 

not reach each detector in an array at the same instant, and 

so there Is a time difference between corresporidlng phase points 

of the disturbance recorded at different spatial locations. 

This time difference can be exprpssed in units of time per unit 

of distance, and thus is the reciprocal of the piiase velocity. 

Let us consider the following model. The signals 

from distant events arrive at the array with horizontal velo- 

cities ranging from Infinity (that is, the case of vertical 

incidence} to some finite minimum value. The noise, on the 

other hand, is assumed to have horizontsl velocities smaller 

than the minimum set for the signals, and such lower veloci- 

ties are indeed to be expected of surface wave noise. Thus 

in this model seismic signals and seismic noise have different 

velocity distributions, and therefore improvement in siipial- 

to-noise ratio can be expected through the use of a device that 

discriminates against noise velocities. Such a device is 

called a velocity filter, and for the model that we have 

assumed it should be a high-pass velocity filter, that is, one 

that passes high velocities and stops low velocities. 

Let us consider a plane wave front. Because a two- 

dimensional group of detectors is equivalent to a one- 

dimensional group in a plane perpendicular to the wave front, 

we shall limit the pres-nt discussion to one dimensional arrays. 

A plane wave of a fixed temporal frequency £%     and spatial 
frequency jx   easy be written 



«'here ö 

splacement 

iin   m^r- iMQ 1-" juaiib    leiJFfiS iti: 

'/ü 1 fi    th 
it 

itf    WtiVf^ Ä^lifr,Ui| 

the arpc 

-ne per 

The  phase 

ig a  pnase 

)d and   the 

velocltv alc 
KiVen    Dv 

\r - -1 

We may  suppose   that  the ab< 
units as 

iDove quantities are expressed in 
^ J. i uw s; 

SA* - 
\r  » 

- temporal frequency, m c-cles per second (c/s) 

- period, in seconds per cycle (s/c) 

= spatial frequency, m cycles per kilometer 
(c/km) 

wavelength, in kilometers per cycle (km/c] 

velocity, in kilometers per second (km/s) 

^/jx -(^^V^!4t,) s (wavelength) / (period) 

The output of a so-called uniformly distributed array 
of h + l     dements over a distance    A      la  equal  to the euVöf"the 

-Jt-e i xgure D * ' W%r w w.. 

.^r ^ 
vertcTöM ^nz 

i 

Ovrm - %Mtfsiof'> 

DnTW* to D£ncroA4  -« 

^ /« - /Urs 

Figure 5. Uniformly distribut ed array (" h * 7 )j 



Hence the output to  the above sinusoidal input would be 
(normalized by the factor i/rv-H  ) 

which is equal to 

Thus the transfer function, namely the ratio of output to Input, 
la at the center of the array 

A„- 
su^Tr^A) 

TUkA 

IS  we let H"*^ # then A*v becomes the transfer ratio of a 
continuous detector whose length Is A ; we have 

Let us Introduce the dimenslonlcss spatial frequency variable 
U ~ jx& *    Then we have 

The figure shows graphs of   AjC^)  ,   KiV)    f  and ^{V) 



fijyl* 

öiHKHWüißA  ^fififii  rfJuSfOAKj' 

3 ^i* IrTils 

fii^lv)- 

*- 2J 

Figure 6.     Graphs  of  spatial frequency transfer functions 
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Provided the noise corresponding to values of V >6  Is neglige 

ible^ It is seen that Increasing the number.ri-H > of selsmo- 

meters in the array beyond 10 can yield no appreciable improve- 

ment in velocity discrimination under the scheme of uniform 

spacing and uniform weighting of the seismomöters In the array. 

For example, let us suppose that the ambient noise Is 

spatially organized and is propagating with an apparent horizontal 

velocity of 4 ten/s. Suppose that one component of the noise has 

a temporal frequency -ft - i c/s; and that the other component 

of the noise has a temporal frequency ft >■ 0.5 c/s. Suppose 

that one component of the signal is made up of mantle p-waves 

travelling at a velocity of 6 km/s and with a temporal frequency 

^t a 1 c/s; that the other component of the signal has the same 

velocity (8 km/s) and a temporal frequency 4t " 2 c/s. Thus we 

have the table (where wavelength      X **  the reciprocal of 

the spatial frequency). 

TEMPORAL 
FREQUENCY ft 

it-i-o % 

SIGNAL 

Velocity 
y-"   * ö km/s 

NOLSE 

Velocity 
y   st 4  km/s 

X^Siw, 1*^ 

XSl|*mt   l/~\ 

TABI£;  Wavelength "X and dlmenslonleas spatial frequency U 
vs* velocity ^    and temporal frequency  ft , where 

X^-r-  * and t/-■ Jä^ «-f- with A - 4 km. 



we recall the  transfi runctlon f^m inapei 

Tffis numfin fc^Tto wuc&m TO um*t mm AT-?  f «| 
f\ s/C     mm.       ... ..^m _ . J » A#/6  n?    VOfJC     HCifH  /fmf      f 

i* 0^ 

*wo re «^s/5 I,//* ^.-Y f.,, 

^ 

Figure 7.  Transfer function of A^C^J. 

We see that the maximum wavelength that can be completely 

filtered out is equal to the array of length A , BO the 

minimum length of the array is dictated by the maximum wave 

length which is desirable to have filtered out. Thus we have 

the filtering action of the array given by the table: 

SIGNAL 
V^  8 

it - i c/s 
(PASSED) 

it- 2 e/s 
(STOPPED) 

NOISE 

0,5 c/s 
(PASSED) 

it - i c/s 
(STOPPED) 

TABLE:      PASS and STOP bands  of array,  with 
spread     A -  ^ km. *t 
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Thus for 8 kra/s P-waves this array with uniform summation pro- 

vides maximum effectiveness only over a small fraction of an 

octave around the temporal frequency -jt = 1 c/s. 

Now le ; us consider an array with equally spaced de- 

tectors but where each detector is weighted by an arbitrary 

factor before summation. We suppose that we have 2n+l detec- 

tors of arbitrary sensitivity at locations X=0, ^^,1 y^,  , + A 

with sensitivities I, &,, C^,**-,0.3 . . If the input 

is 

Cosan^tt+M.x-vp) 

then the output is 

so the transfer ratio is 
n 

3*J 

n^ 

We see that ft^ is a periodic junction of 4K 

we have 

When JpL = C 

¥* 

when TX "^  we have 

rv 
AHÄ I42Z a-J (i-r). 

which is a Thus the period of Mh corresponds to 7**"^" 

wavelength X*-7r  ' namely the detector spacing of the array 

In other words« the array cannot distinguish between the 

following two situations: 
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A VMf. OF t&O 
tftoifiL mauytf: fa o 

Ö—>- 

/? y/^ve OP 5/wr<wi FmuiMs 

Figure 8.  illustration of aliasing. 

This phenomenon is well-known, ana is called aliasing. Thus it 

is desirable to choose the detector spacing such that the 100^ 

response peaks that occur after fc-O do not correspond to 

wavelengths that are associated with substantial energy. 

Suppose the following values of fcj are chosen (Savlt. 

Brustad, and Slder, 1958): 

00   = 1.000 

a, - 0.987 
Oi - 0.9^7 

a,- 0.888 

a» - 0.809 

as- 0.704 

0.592 
0.473 
0.348 
0.224 

0.105 



56 

The transfer ratio  In terms of dlmensjoaless spatial fregency 

Graphs of    Q^    and   AHCV)   are shown In the figure 

*|<>      *f      -4     •# 

Figure 9. Weighting function OT and corrpsnonHin,, * 
function AtoCiO.    ^     corresponding transf er 
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5.       VELOCITY FILTERING 

The corcept of filtering seismic signals based on 

their apparent velocities is treated by Texas Instruments 

Staff (1961), Embree et al (1963) and Fail and Graw (I963). 

Such velocity filtering for the nuclear surveillance problem 

is Implemented by ^.le use of large arrays of seismometers. 

Velocity filtering, then, is a multichannel filtering process. 

The process uses a number of input channels from the seismo- 

meters to produce each output, but differs from conventional 

mixing and filtering techniques in that each input at a 

different delay is filtered through a different appropriately 

designed filter response before being summed to form the 

output. 

In order to design such  multichannel filter, a 

working mod*! of signal and noise must be formulated in the 

temporal and spatial frequency domain. In addition, criteria 

for judging the performance of the arrays must be established. 

The theoretical requirements for optimum processing have to be 

developed with the quantitative evaluation of the performance. 

The primary objective of large array systems is to 

provide a better picture of the seismic signals when they are 

masked by ambient noise. A large array should make it possible 

to detect and identify seismic events that are obscured by am- 

bient noise when only a single sensor is used. 

The complexity of the seismic waves that crrive at 

a detection station is well-known. For either an earthquake 

or an explosion source, the following sequence of seismic 
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wave>  is  produced: 

(1)    |-waves,   or longitudinal body waves. 
K 

y.hfVe a Propagation velocity of 
about 6  to 8 tan/s,   dependlng 0/t^ 

(2) S-waves,   or transverse body waves. 

oflTvll1.  ^ 0-6  tlmeS the Veloc"y 
(3) Love waves,   or horizontal transverse 

^face «aves.    They travel alonf 

itoTT£/rc*ce at a veioci^or 

{*) Raylelgh waves, or vertical surface 
waves that perform a retrograde 
elliptical motion with Its plane 
lying along the axis of propagation. 

The P and S waves are subject to reflections and refractions, 

and the surface waves undergo dispersion. The result Is a 

complex sequence of oscillations whose nature Is governed by 

the characteristics of the transmission paths and very little 

by the source Itself. Since the only part of the wave train 

that arrives undisturbed by later modes Is the P wave (the 

first arrival). It Is the mit  Important signal currently 

used for location and Identification of the source. Secondary 

objectives are the extraction of s-waves and surface wa.es m 
the presence of noise. 

The noise obscuring the desired signals may be 
categorized as follows: 

(a) Ambient coherent microseismic noise 
propagating primarily as Raylelgh * 
waves, with an apparent horizontal 
velocity of ?.5 to 3-5 km/s. The 
Isotropie assumption means that the 

a^y^i^utr115' '^ t0 COme ^ 



(b) Local coherent noise from sources 
such as factories, lakes, railroads, 
highways, propagating primarily as 
Raylelgh waves, but with a particular 
azimuth of propagation, 

(c) Incoherent noise from sources or 
scatterers within the array area, 
including locally generated wind 
noise, 

(d) Incoherent instrument noise. 

The P-wave signal may be characterized as follows: 

fa) Coherent 
fb) Equally likely to come from any azimuth 

') Apparent horizontal propagation velocity 
of 8 to 15 km/s. 

The signal and noise can be shown in the three 

dimensional temporal and spatial frequency domain, whose axis 

are -ft» ^x, -^y  , For example, a propagating sinusoidal plane 

wave is a point in the ^t, i*, \y      domain, even as a sine 

wave ^m iTT-^tt,  is a point in the ^t     domain. The signal 

and coherent noise in the working model are continued in the 

conical boundaries shown in the figure: 

'n> 

Figure 10, Signal and noise in three dimensional frequency domain. 
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Assuming that the signal propagates with a speed of from 8 to 

15 km/a,  and Is equally-likely to arrive from any azimuth, the 

signal power lies within the conical boundaries shown in the 

figure. The total power at any frequency jt     may be obtained 

by integrating over all 4*» fa    for that  it > and it is 

assumed to be the curve shown in the figure: 

ll 
I 

Figure 11.  Signal power density spectrum 

-r^- 

j£ m  C/A, 

The noise power lies between the two cones corresponding to 

velocities of 2.5 to 3.5 km/s, and by Integrating over -jx 

and 4/  we assume the power density has the form in the ft 

domain as shown in the figure:, 

Figure 12. Coherent noise power density spectrum 
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Incoherent noise at a particular frequency  jt 

distributed over the entire  ^x, 4y  plane. 

is uniformly 

For the Isotropie model, a vertical cut in the 

jtj  ^x, \y      space is independent of azimuth, as shown in 
the figure: 

%   (c/Jm) 

Figure 13. A vertical slice of Figure 10 

For a directional signal model, the three dimensional space 

must be retained. 

This working model of seismic signal and noise has 

the following important features: 

(a) The signal and coherent noise are com- 
pletely separable in ft: ^x, b space. 
•Ulis separability is unique to the 
seismic case; in  radar, sonar, and radio 
astronoijy the signal and noise propa- 
gation velocities are identical and so 
separation can be achieved only on a 
directional basis. The maximum, improve- 
ment in such cases is JH      (in amplitude) 
in signal-to-isotropic noise ratio by an 
H     element array; because the signal 
and coherent noise are completely sepa- 
rable in the seismic case, greater 
gains are possible* and the achievable 
gain is dependent on the temporal and 
spatial distribution of the noise. 
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(b) The signal and Incoherent noise are not 
completely separable, and hence this 
noise cannot be as effectively reduced 
by an array. Achievable array gains 
are thus critically dependent on the 
power ratio of incoherent noise to 
coherent noise. 

Let us now consider the actual implementation of the 
velocity filter. We want the filter to pass waves in the vel- 

ocity range from "V to -l-V > so the desired response in tem- 
poral and spatial frequency is 

• <.IM 
A(Wx) = 

V 
0    ^r  f 

0    V  J^Uix 

This transfer function is depicted In the diagram: 

= Y 

Figure 14. Desired spectral response function of velocity filter 
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At a given frequency -jt  the spatial impuls e response is 

4 JM 

acit.^r 
/ 

e"2TT^x df 

i** ~JM 

v 

v 

i 
1TTX 

V 

CtjsiTT^X di^x 

ik 
6^^ HM 

TTiC 

ir    |ft|*V        then     ackX)-^^-      ,  which looks  like: 

sffmLMtim mpmt m jfjs v 

Figure 15. Spatial impulse response of desired filter for I^V 
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whereas if    ||t|=2V    then    OKit,X) s-^^——      f  which looks 
like: 

e$f   i.o & 

Figur» 16.  Spatial impulse response of desired filter for 

Therefore, in terms of arrays., such a process appears at low 

frequencies as a very long array, which passes long wavelengths 

and stops short wavelengths, or in other words it acts as a 

narrow band low pass filter in spatial frequencies. Such a 

prcw :ss appears at high frequencies as a very short array, 

which passes shorter wavelengths, or in other words, it actt! 

as a wider band low pass filter in spatial frequencies. 

The impulse response in time t  and space X is 

given by 

act 

, Jjtl 

1    -~ i^# 
= re™;4tt C3tCM># 

-«0 

r M, 
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in the usual case, the array will be made up of equally spaced 

sensors with spacing AX  , as d-plcted by: 

•^n* ±£ m'^ **'•:* "^ A"' h"^ -^/^ 

t ••'J^*^* «.r is 
O&mKof fKMM 

Figure 17,  Sensor spacing 

We suppose that there is an even number of sensors, and we 

let Xm  denot< the distance of the IB* sensor from the 

ceater of the array. Thus X, = +^. X-.-f^. X^i^, etc 

The process may be Implemented by passing the output of each ' 

sensor through a temporal frequency filter with transfer 

function specified by 

« Am 

wi 

and then summing the outputs of all the temporal frequency 

filters. The frequency spectrum  CXty.X»)   looks lile 

a {h> *m) 

Figure 18.  Frequency spectrum of CU^Xw) 
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At any given temporal frequency, no array with equally spaced 

sensors can distinguish between zei'O cycles per  2 ^X  , or 

any other integral number of cycles per  2äX   , as shown in 

the figure: 

i true/** 

w 

Figure 19. Spatial aliasing 

Here  J/»AX = jx is the Nyqulst siÄtial frequency (or the 

folding spatial frequency), and the equally spaced sensors 

result in a periodic response in spatial frequency, the response 

being repeated at the interval 

and the desired response can be achieved only over the spatial 
frequency band 

-« 
1^ 

lAX 4 4*i ' =}r ^AX 
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At temporal frecuencies above 

v Ktl = ^v l^x 

the specified pass band of the velocity filter extends beyond 

the Nyquist spatial frequency -jj  >  so the temporal frequency 
range over which a useful response may be obtained is limited 

to temporal frequencies below jt  . Thus a sampling interval 

At — , , H   may be chosen, and no information is lost provided 
*7% f    H! t     ft 

the data is limited to frequencies below -^ and -j^       *    ^  we 

let T»v*^&t  be the time of the n*K  sample point in the is- 

crete impulse response of the time-domain filter, then we : ee 

that V  satisfies 

v=- H.N 
I^t 

I X 1AX 

The required coefficient of the tl*H   time point of the time- 
domain filter for the  Vr\tH    sensor is 

i     »        I -ikL 

acla.Xm) = 

Jt      7A       'IX"      v 

J^^^TH-^XX^ 

iwi 

■n-Xm 
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'23[ 
ÄTnr i ^ 0QsC^tTn)i;AC2TT^^

1-) 

i 
2Ät 

-4 

Now the following Integration formula occurs m standard 
tables: 

/wax Coibx dlx = 4 r-^iÄ+^i+J^i 
J ■t''    a-b n + h   J 

provided   tl^b1      .    Hence 

a(T..x«)^(-4-) TTX«' 2'1   i^C-^-h)        jTT*t(^+n) 

^ 
^ 

4^0 

lirAt^H)   2TrÄt(^'.n) Ü5iS^0 2«^+^ 
J 

and since 

AX"*   .I 
0      where   Wt    1« an Integer 
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and since    Tl     is an integer.   It follows  that 

Am   * 
AX   ~n 

la  equal to an integer divided by ^. , so the first two terms 

in the expression for CXCTHJXW^ above vanish. Hence 

where 

U CTn, Aw) "TTXM ITT At 

I + 
AX &X - 

I fl^^+t^^) 
aiT^^t 

It1***     i Xw \i m1-* 
Tn=nAt    j      n^i^il, 

Xrn= 
cm-j)AX j  m*i,i,3^fc4 

It is seen that the linear operator  OUlnjXwJ is symmetric 

about the origin in both space and time. 

by 

The theoretical frequency response can be recovered 



70 

In practice only a finite number of fl   and W. values can be 
used, so the theoretical frequency response is only approximated, 

Incase nsO. + l.tl.t V^.tto and m-11,12, --,±6 then the 
actual response is as depicted in the figure: 

Aciud frtoufncf mp<**& 

Plgiffe 20.   Theoretical vs. actual frequency response 

i 
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The linear operators Ow(Th,Xm)   are depicted in the 

following diagram: 

<^— 50%  ÖF P6AK 

KAU/S öf rf* 

to* SMOk   X AM -X 

fOA ^örjoA   3 «^ -^ 

FO*  SftlfStfA   H  Al^ -# 

I   '   '   «    I    i    I   i   I   lin   lit    I   I    (   i   I   ^   i   .   f-f-l    I    I   i   »    ,   i   ,   ,   ,   , 

/iöÄ it/VSöA   6^ AJ»P -5" 

£ß* 5£/V^A    6  /»^o -^ 

Figure 21.  Linear operators for first six sensor positions 
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Let us now illustrate the actual _ 

filtering. Suppose that we have the 12 trac^ 
figure: 

process of velocity 

s shown in the 

V^ &h*/au. 

ovmtr <* 

mtir ^wi v**1*- ***&* ftuKirr   vnoarf   vuoaif   vci^-riv 

P^e 2a.   ^^ of veloclty futer^ in ^ tiffle_spa^ ^ 
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Let us choose the cut-off velocity   V   equal to say 10 ion/sec 
and let us  suppose the spacing of the sensors  is  ^X  ■  1 km. 

Then the Nyquist spatial frequency is 

and the Nyquist temporal frequency is 

It        >*- 1A>C   ^t       K2 

Hence the discrete time spacing is chosen to be 

The foresoing figure portrays four events with velocities of 

5 kra/s, 10 km/s = the cut-off velocity, 20 km/sec, and infinite, 

from left to right. The waveform is a sharp transient that is 

identical for all events. Below the input record is the output 

of the velocity filter designed to pass events with a velocity 

greater than the cut-off velocity of 10 km/sec. The output 

trace corresponds to the center point cf the array. Interpre- 

ting the output trace, we observe the following; 

(a) Events within the pass region, that is, 
with velocity greater than the cut-off 
velocity V » 10 km/sec are passed by 
the process with virtually no waveform 
distortion. 

(b) Events having a velocity equal to the 
cut-off velocity V » 10 km/sec are 
attenuated by 6 db- as shown by the 
actual frequency rtjponse contour 
above, but still with virtually no 
waveform distortion. 

(c) Events having a velocity less than the 
cut-off velocity are generally attenuated 
in amplitude by 20 db or more. 
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Velocity filtering offers thf» capability to enhance 

signal-to-noise ratio significantly and without danger of 

deteriorating signal waveform as no signal bandwidth is 

sacrificed. In other words, it makes it possible to process 

seismic array data in such a way that all seismic events with 

velocities in a given range ar^ preserved with no alternation 

over a wide frequency band, while all seismic events with 

velocities outside the specified range are uniformly and 

severely attenuated. Velocity filtering may be looked upon 

as a process whereby it is possible to combine the elements of 

a line array in a nanner resulting In a directed beam with low 

side lobes, where the beam width and side lobes are essentially 

Independent of frequency. By applying the velocity filtering 

process to a noisy array, an output may be obtained that has 

all events within a specified velocity range perfectly pre- 

served and events without this range essentially eliminated, 

a result which is impossible by conventicnal array usage. 

In order to effectively utilize velocity filtering 

In practice,, a noise and signal analysis procedure must be 

followed that will furnish the needed Information for effective 

array design and emplacement. Of course, it is feasible to 

emplace a standard array layout at each site without prior 

measurement and analysis of the noise. The signal and noise 

parameters for the emplaced sensors would then be estimated 

from the actual array output, and then these parameters can be 

used in setting the filter responses for the processor. Thus 

If a standard array layout were required for political reasons, 

and no measurements were allowed prior to site selection, it 

still would be feasible to utilize the array effectively. 

Nevertheless, a more effective network can be established by 

obtaining local noise and signal characteristics and utilizing 

them for local optimization of the array emplacements. Thus 

an effective noise analysis and array design procedure can be 

worked out In which detailed noise measurements are made, and 
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a data analysis is performed to establish the temporal and 

spatial frequency characteristics. The necessary array length 

and number of sensors ^o provide good slgnal-to-nolse ratios can 

then be determined from the noise characteristics. The per- 

formance of the array is then checked out, and it is put into 

production. Nevertheless, there are many complications to such 

a relatively straight-forward procedure. 

The problem of noise measurement can be divided into 

three phases: 

(a) Measurement of signal and noise for the 
purpose of selecting the site. 

(b) Measurement of signal and noise at the 
selected site for the purpose of establish- 
ing the permanent array layout. 

(c) Measurement of signal and noise on the 
emplaced array for the purpose of deter- 
mining the necessary filter settings. 
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6. SPSCTRAL ANALYSIS 

In order to provide the desired information about 

th? noise and signal, data analyses raust be performed. It is 

anticipated that a real-time analysis of the data will not be 

poss-ibae; thus selected samples of noise and signal data are 

the inputs to a digital computer analysis program. 

The parameters of the most importance in the design 

of an array are the distribution of noise and signal versus 

apparent horizontal propagation velocity, azimuth, spatial 

frequency spectrum, temporal frequency spectrum, time stability 

of the noise characteristics, coherence versus frequency and 

sensor separation. The desired information can be derived 

from the data by operating on the cross-correlation function 

and its spectral density. Also the cross-power spectra of 

signal and noise constitute necessary information for the 

design of the ideal piocessor. Thus the accuracy in the 

determination of the necessary parameters is dependent upon 

the nccura^y with which the density spectra can be estimated, 

and so thjs problem will now be discussed in some detail. 

The development of a theory of spectral analysis of 

empirically observed signals begins with the introduction of the 

notion of the sample autocorrelation function. Suppose we 

let 

^1,^2,* -rt 

denote the sampled values of the signal of interest. Then the 

sample autocorrelation is 



The perlo.ogram,  or Fourier transfer» of the sample auto- 
correlation,   is ^uto- 

so , 

4 
The perlodogram may also be written as 

§ c4i = ^o)^^ I Cosing ■ 4it-) 

and also 
i 
2 

^ctL10^:' Uke the SanPle -*—^tlon, ls an ev, 
ZZltT*?**:^-    POr ^ ^ ^- ^ -ationar. 

where  ^Ct)  lB the autocorrelation function of the proces. 
^en for every continuous function Qfy      we ^e 

1 1 
2 „•,     ri 

-1 ^»    tt)<n 

i   -^ 

2 

i 

«3^)$(j)d^ 
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where 

is the spectral density of the process. The expected value of 
the sample autocorrelation is 

so its expected value is biased by a factor of 0~~fr)  from 
the true autocorrelation 

Suppose that we form a linear combination of the true 
autocorrelations given by 

Now the expression in brackets is the Fourier transform (as we 

assume Ott* &-t       of the weights Qte ; this Fourier transform 
is called the spectral window A^}> ), that is 

Let us now assume that the stationary process is 
normal with zero mean. Then 



IM) 
rt * l as    n—»^     .    Thus as   n.—to* 

where    ^— fc | as 

But 

Hence 
1 
2 

&*i^\ $M '+±j  l^) e*^ 2 cosaTiito ^ 
2 

2   f^i 

as     VI—»o-J   . * 

aTutcih:eLe:1
1::ions of the sampie —— ^ ^ ^ 

Is approximately nornal with means 

21 
n +a)^o       «M   n^^ 
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and covariances 

CÄr|yi>tyti>\ = Cog- (4^.).^^] 

~j1 §2(|) Cos MX, C« lltltj Jf 

w n->oo 

The spectral band power estimate la an estimate of 

the spectral mass m the interval  (f.-k.^.+ f,)  whlch ls 

%-l -k^ 

The spectral window Js 

'i 
A^=  i 1 0 

-{or   -i*-^<H«H 

which is an even function of ^ . The corresponding weights 
are 1 . ^ 

Ot = f Aifie^Wf =2 / Vf) c«sarit4j 

/ 

f.+« 

^ 

J    J     mt i-f.-!, 
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Thus, in order to estimate 

we could use the estimate (the spectral band power estimate) 

J A4>i^4 

and since   Y»»CtWO       for   Itl^K        this estimate can be 
written 

1 
/a 

a6 

2 

In other words, the spectral band power estimate is equal to 

the energy In the periodogram in the spectral band of Interest, 

The expected value of this estimate is 

lfat^i = I QtE{iit)} 
U*'* ^      t=-o 

ItKn 

New the function defined by 

Itl I n 
Wt* 



serves as a weighting function to improve the convergence of 

to A(^  as n—►oo . in other words 

is a better approximation to M)   , The weighting function 

\jjt     just given is the well-known Pejer weighting function; 

of course, any number of other choices are possible. 

by 

Then 

Por example, suppose we estimate the autocorrelation 

4>m= 

E{<H = o 

-jo*- v>n,i 

-for t< 0, 

so the expected value of the spectral band estimate is 

vt*-«»        /    \mnt t—Qo 

where 
f   I 

Wt 

fa    Itl^n. 

k 0 fa  lt|>n,# 

This is the well-known Dirichlet weighting function. 
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The statistic 2. Ut+^t)   under the stated 

conditions is normal with mean 
1 

and variance 

I I Ot^Co^^UM^] 

2 

i 

Cii n-^oo 

ii 
i 

Thus the above statistic suffers from two kinds of errors. One, 

the bias comes up because the mean of the statistic is not equal 

to 
s 
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but is equal to 

A 

2 

"vIL"::' ^ t0 StatiStlCal "—-' " -..cate. 

Purthor dlsc-jsaton of these points is given m the work of 
»■arzen (1961, ig&t) and Blaokman and Tukey (I958). 
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7.       DISCUSSION QP "PECTRAL WINDCWS 

As we have seen, narrow time signals have spectra 

that are wide, and conversely. In order to give a quantitative 

measure to this observation, we need to define the durations 

of a signal and Its Fourier transform in a simple and useful 

way, but no single definition can be suitable for all possible 

signals. 

For a measure of the duration of a time signal $d)    the second 

moment of ||t^)i  about its mean or some other suitably chosen 

point can be used, which we can take to be the origin t»0 

Prom  *|(.t) «—> Glf)  we obtain the Fourier transform pair 

where   G^p ~ Av^C^J *   . By Parseval's formula we have 

CO 

wfß*\m2*'j lif|V 

[(£WH. 
-•o 

We therefore conclude that high ripple in the amplitude A or 

phase ^  results in signals of long time duration.. Among all 

functions with the same amplitude /\tw) the minimum phase one 

has the shortest time duration. 
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To simplify notation, let us assume that the energy 
of the signals under consideration equals one: 

■"06 ^Qs 

The Schwarz inequality is 

-co 

,c» 00 

m\i iM'dt 
-00 .00 

where the two sides are equal only li    %,      l8 proportional 

to ft   . Let us insert Into this Inequality the functions 

1,1t)-t|tt) ,   8lrt)=^. 
dt 

Henc e 

ru^wjj^iy^t 
Integrating the left hand side integral by parts we hav, 

where we have assumed ^  is reai and lg 
Pr0m ^dl"4^ 2^^^) it follows that 

0 ai t->±0o 
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Hence 

T   y ^oo 

If we let  ^«i^^l^t ;    and ^.jlmf^Hj      then 
we have fd^^jr 

The equality sign holds if  -tT'* ""Kt J^   where 
^  is a constant. Solving, we obtain 

Choosing  "^ """Tal Ä "^^  we obtain 

The transform of 9(t) is 

Thus a narrow pulse ^t) has a wide spectrum Q{\)   ,  and 
conversely. This pulse ^ct)  is the well-lmown Gaussian 

pulse. 

Another set of well-known pulses are: 

for various values of rt  . These are called the It^i power 
cosine pulses. The transform of ^ct) is 

1 
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Let us choose our units so ^=2 , so 

^t) = 
&    lil>l 

-A HtCo^lff 
TT   itl vlHftH n^i^s.T.-- 

n< 
r2— 1: j^TTf 

vofvih n^i.q.,^-- 
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For example,   if     ft«!      then 

9m = co5^ ^r    |tUl 

and 
4   tomf ( Caf« t-=2) 

If on tiie other hand we had let    ts|     (and K=\      )  then 

h^- 
(   C«SITt 

ui 4 
and 

.1 

Letting    f * 2t we have 

TTt' Ä. i! GC4)-T      Cc5^CoUlT{|  it' 
*i> 

1   /"   toi£t: to^^f df 

-I 

i   4    Ccrf 2Tr| 
2  it    t-jbti^ 

from the foregoing resuxt. 
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Kenc e 

G^4-^ä C^^^-i) i-H 

C0^ = i+^toÄ fa   |tH| 
Now suppose    H=-l    .    Then 

] 

^'t  o i- lti>f. 
This is the well-known pulse named after the Austrian meteor- 

ologist Julius von Hann, and called uhanning" by Blackman and 

Tukey (1958). 

If we let IL« |  , then the von Hann pulse becomes 

Now fyi)      may be written 

;2i . Ill 

where      t%ttCt)       ,  read "rectangle of t H  is defined as 

f * ]**     |t|iT 
**   * (C 4«     jt|>T. 

The transform of  rietet)  is 



Hence the transform of     ^d)       is 

^«[^(^H^H^+Z^^W11 
lirfT J 

&*ift(It~h)T 
mi-^) XT 

5mnv4Tf I 
1 I Ttf     iirCHi)     mFaT^ i 

2        [irf /^w/a^ rtf ,1 (2Tr})2-(^) 

~ iXn^T - 
:nrj((M)-Ct)M 

(^T) 1 
Tr2-C2TTiT)2 

If we let     ol = ^fT  , then 



92 

The spectrum    Q^)     is thus the —j—     function^  corresponding 
to a uniform aperture distribution^  multiplied by   TT3T     times 
the factor    -J   ~       .    When    dl=±^        ,  this factor is 

infinite,  but    Ötj)     remains finite since   ih\(%    also vanishes 
at   ds + Tf    .    The first zeros  of  ~J—   are thus  suppressed. 
For increasing values of     Mj      ,  greater than IT    ,  the factor 

-   a      ^      decreases rapidly,  thus reducing the Intensity 

of the side lobes.    This is of course why a cosine-squared 
pulse is used in preference to the rectangular pulse in spectral 
estlnation.    The following figure shows   Qi?c|)     for the rectangu- 

lar pulse     JJRU)*!       for   |t|$T    and   =0       for |t|>T    and 

the cosine-squared pulse: 

'Hure 23.    Sp«tra of rectansular and .o,^.^^ ^ 
es 
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8. REI/.TIüNSHlP BETWEEN CONTINUOUS AND DISCRETE APERTURE 
FUNCTIONS 

Suppose that we have an array of equidistant elements 

C AX* E d) connected in phase with weighting T(Xj[) 'T(X.i)*TA 
See figure 24, 

1 

: Ti 

r* 

ffl M  *i 

Figure 24,     A six-element array 

We shall only discuss  the symmetrical array consisting of 2H 
elements;  a similar theory can be developed for an odd number 
of elements, 

The pattern of this  type of array as a function of 
direction     &       is given by 

1 ' i*i 

ITT X» ^K& 

Let us indroduce the new variables 
i 
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and 

I- 5iiv0 

l^d 

Then we have 

an 

The function [ Aj^^)  is periodic with period 2)1 , 

Let us now consider a contin >us aperture function 

Tc^) of Hidth L=^Hdl passing through the points (X-jhT*) 

of the array. The  pattern due to this continuous function is 

4 
in comparison to the pattern of the array, which we recall was 

n 

In order to show the relation between Ai»^) an<i AcCj) 

we represent the array T\   as the product of "TcOO with a 

uniform array of infinite extent and reduced interval I/^IK 

m       Irv 
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Here we use the notation 

o.-3 

See Figure 25: 

\ 

^-^-, ^fxyXitfi 
i 

t VT^ 
^ h- 

^•--t v*   *-i 

Figure 25J  Ü as the product of Tc^) with a comb function 

As a result, the spectrum of Tfc  is the convolution of the 

spectra of CombJL and Tc<.^)  . Because the spectrum of 

Cowb-Jj-.   is another uniform array of infinite extent with 

period  Inc« l/d)    we have 

or 

/\lr0$)=Comb2n*AcS51 
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where  r«-|j    is defined by 

oo 

This la the well-known result of allasln« (Blacken and Tukey, 
J-yDo; Jaaqulnot and Rolzen-Dossier^ 1964). 

i 

I 
i 

i 

I 
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9.       LISTING OP VARIOUS APERTURE FUNCTIOHS AND THEIR WINDOWS 

The form of an aperture function is indeterminate to 

the extent of a proportionality factor. In order to compare 

different functions some convention must be chosen to fix 

this factor. We suppose that the real aperture function ^*) 

vanishes outside the interval -«/i^-^^/i . We want the 

function to have the maximum possible transmission. Because the 

Intensity at the center of the pattern produced by the uniform 

aperture function  |st)c)s|   f or -^^ X ^ Vi  is 

im - [GH
5
> [ j.1 H = I . 

we shall consider in the case of a non-uniform aperture function 

the ratio 

1(0) = f Gio) 
Io<0)   LQoio) 

12    r   fi i1 

We wish to decrease side-lobes as much as possible without 

decreasing  JtOVJ^O)  too much. 

The total energy transmitted by the aperture is 

proportional to 

4 
which for a uniform aperture function is 

Therefore we are concerned by the ratio 

'|- = Jx [|a>] Jx. 
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Our object must be to decrease the side-lobe level without 

decreasing  X"^» ^o much. 

The width of the main lobe of the pattern G^) Is 
also of interest. Let us as a convention put the width Äi0 
of the main lobe of the pattern from the uniform aperture 
function equal to unity; this unit width turns out to be 
the distance between the two points with ordinate 0.405« We 
then extend this definition to other patterns; their widths Al 

will be taken always to be the distance between points of the 

nor alized ordinate 0.405. 

To confirm our notation in this section, we have: 

Aperture  :   Ua) = j    J /  , . f 

Ottern   ;   {^Aw C1 %a^ e'21,iXÖ ^ 
(or window)  13^^« I  ^i ^ 

Intensity : 1(6) * I Sld)| 

Zero subscripts «efer to the uniform aperture function 3»tX)«l 
for lx(*^ . It turns out also that all the aperture functions 
we consider are even functions of X    so 0^0) is real. 
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1*    Triangular aperture:       QiX)-l-|2x| 

Ko) 

^ = 0.33 , 
to IM 

= 0.15 > 
Ale 

z m-G 

_ 5tn airx 2*    Sinus cardinal aperture;       /ftX) —' '" 

1(8) .      ^lT(Q-ft)-^Tr(9H)  ] 
1^0) If.TT 

3.    Cosine apervjre: ^c>)=Cc^^X 

1(0)       ti-M-^)1 

J 

i=4H.0,4S   Ms(M.fao.iS,   4 = 1.42 

To 
13+ 



1Q0 

5 

4.    Gauaalan aperture; ^j^ = g*^* 

liO)     l J 

(Note:     This       IC^i/liO)   does not represent the intensity 
exactly, as it neglects the cut-off of  Qa)     at   X*±%& •) 

3L. 
% 32 * 

1(0), 
D.I1), = 1.72 

5.    (t-H-X1)^ aperture: |a>^tl-H-^ 

1T9) S2 

M.fiJLf.o^    ^.= ,.43 
no) vifc'      '   AI. 

- av^1 
»^ 6.    (1-4**)     aperture; ga) = (l-4xl) 

lf=(As<ef[,5j| 
-.2 

-trO.41, 

AvC^*2   n^+n (if^v    wnere Jj/ is 3e83el Note:     Here 
function of order J/t 
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7.    Lilig!jÜ aperture:        1^) = C i-^X2)^     ^cr^^O 

JTT'       Td^+t) 

^^TS^A^' 



102 

10. REFERENCES 

Ähleser, N.   I. and M.  Kreln,   ig62t Theory of Moments, American 
Math. Society,   Providence. 

Barber,  N. P.,   1961,  Experimental Correlograma and Fourier 
Transforms,   Pergamon Press,  London,  p. 136. 

Beckuann,   P. and A# Spizzlchino,   1963,  The Scattering of 
EJiectroroagnetlc Waves from Rough Surfaces,  Pergamon Press, 
London,  pT503. 

Blackmarj-i,  R, B. and J, W, Tukey,   1956,  The Measurement of 
Power Spectra, Dover,  New York, 

Brown, W. M,,  1963* Analysis of Time-Invariant Systems, 
McGraw-Hill, New York, p. 3WI ~~ 

Erabree,   P.,  J.  P. Burg and M.  M. Backus,   1963, Wide band 
velocity filtering. Geophysics,  vol. 28,  pp.  ghB-gjU. 

Fail,  M. D. and G. Grau,  1963*  Les flltres  en eventail. 
Geophysical Prospecting,  vol. 11,  pp.  131-163. 

Geronlmus, Ya. T,.,  i960.  Polynomials Orthogonal on a circle 
and Interval,  Pergamon Press,  London, p. 21Ü7 

Jacqulnot and Roizen-Dossler,  1964, Apodization,   Progress in 
Qptlce,  vol.  3*  North-Holland Publishing Co.,  Amsterdam. 

Parzen, E.,  1961,  Mathematical considerations in the estimation 
of spectra, Technometrlcs,  vol. 3, pp. 167-190. 

Parzen, E.,  1964,  On statistical spectral analysis,  Proc. Symp. 
Appl.  Math.,  vol 26,  pp. 221-246, American MathTloc.,   Providence 

Ross,  D, T.,   1954*  Imfyoved Computational Techniques for 
Fourier Transformation,  M.I.T. Servomechanisms Lab,  Cambridge. 

Savit, C, H.,  J. T, Brustad and J. Slder,  1958, The movement 
filter. Geophysics, vol. 23* PP.  1-25. 

Simpson, S. M., E, A. Robinson,  R, A, Wiggins and C.  I. Wunsch, 
1963* Studies in Optimum Filtering of Single and Multiple 
Stochasllc Processes,  M#I.T., CanmriHge. 



10 

Texas Instruments Staff, 1961, Vela Uniform Report. 

White, J, E., 195Ö, Transient behavior of patterns, Geophysics, 
vol. 23, PP. 26-43,    



104 

Unclassified 
Securitv f lassifKiSi«! 

DOCUMiHT CONTROL DATA - RiD 
(Security- f/#iij/iea(iai! #/ »It*, köäy at &&£ffatl emd indexing on/jolaiißB must je mlrred when ihr ei-rrail rrport !* tlstlifiSi 

i.    OliOiNATlNa  ACTIVITY   fCofpamit mtthBti 

Dept. of (ieology and Geophysics 
Massachusetts Institute of Technology 
Cambrid^ej  Massachusetts 02139  

la     BgPÖHT  itCy*lTY  CLAlSiFiC ATiöi» 

Unclassified 
~J%-    GROUP 

SEISMIC ARRAYS FOR THE DETECTION OF NUCI£AR EXPLOSIONS 

'«    Of*C»il»Ti¥t HOTe» (Typ* &f fepoft and mciunvt: dateil 

Scientific Report 
S    AUTHO^fS^ (Latt ttmte, ßfft name, auludi 

Robinson, Enders A, 

i    RfPOUT OATt 

June 30*  1964 
• a.   CO»lTi»»CT OR 5RAMT WO. 

ÄP 19(604)  7378 
6.     PBOJBCT    HO- 

8652 
c,     T*iÄ 

,        865203 

la.   TOTAL  «O    OF PAGgS 

102. 
TST tO, Or «EFS 

16 
»a.    ORISINATOH'S RePOWT  H\JMmf*(S} 

Number 8 

9k    OTWE« Mf POMT »OfSJ (Am otirr numheri £*« m&r it 
aniffted On report} 

AFCRL - 64-855 

»0      AVAILABILITY/LlHITATtO» HOTlCC» 

Agencies of the Department of Defense, their contractors, and 
Government agencies may obtain copies of this report from DDC, 
All others U.S. DSPP. CF COMhERCE 

suPPLe»»e»iTA«v notes 
TECH. SERVICES, 

i    SPOMSOMtMS «IILlf »«Y ACTIV.tY 

Air Force Camb. Res, Labs,, Qffide 
of Aerospace Research, United St£ tes 
Air Force, Bedford, ffessachusetts 

»i. ««TRACT seismic arrays are multichannel sensor patterrns immersed 
In a niulti-dlmensional signal-noise field and the analytic probler 1 
is hence analogous to that of radar antennas. The subject is thui 
opened first by a review of antenna theory, considering questions 
of aperture width, antenna resolution, and of optimum design cri- 
teria, and secondly by a review of spectral theory, including 
special examination of the Ross "time gates". The general optimi- 
zation problem for multichannel data leads to large systems of 
normal equations of Toeplitz form (as presented in previous reports) 
which require recursion solution techniques to be computationally 
feasible. Such techniques are elaborated here in terms of poly- 
nomials orthogonal on the unit circle. The specific seismic array 
problem is then considered in terms of plane-wave-front signal am 
noise contributions plus Incoherent noise, and details of the "ve- 
locity filtering" method are presented. All practical array fil- 
tering rests ultimately on empirial measuremsnts of signal and 
noise properties, especülly of spectral behavior. Spectral estlmi 
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13. Abstract, (Continued) 

tlon from finite array measurements is the final question con- 
sidered, including relations between continuous and discrete 
aperture functions, and the tabulation of aperture functions 
with their windows,  (U) 
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